Epicardial Adipose Tissue-Derived Leptin Promotes Myocardial Injury in Metabolic Syndrome Rats Through PKC/NADPH Oxidase/ROS Pathway

心外膜脂肪组织来源的瘦素通过 PKC/NADPH 氧化酶/ROS 通路促进代谢综合征大鼠心肌损伤

阅读:3
作者:Hui Chen, Lei Liu, Min Li, Danjun Zhu, Gang Tian

Abstract

Background The epicardial adipose tissue (EAT) of metabolic syndrome (MetS) is abnormally accumulated with dysfunctional secretion of adipokines, closely relating to cardiac dysfunction. The current study was designed to identify the effects of EAT-derived leptin on the myocardium of MetS rats and explore the potential molecular mechanisms. Methods and Results A MetS rat model was established in 8-week-old Wistar rats by a 12-week high-fat diet. MetS rats exhibited increased leptin secretion from EAT, cardiac hypertrophy, and diastolic dysfunction with preserved systolic function. The myocardium of MetS rats had abnormal structure, increased oxidative stress injury, and higher inflammatory factor levels, especially the subepicardial myocardium, which was correlated with the EAT-derived leptin level but not the serum leptin. The EAT was separated from each group of rats to prepare EAT-conditioned medium. H9C2 rat cardiomyoblasts were treated with EAT-conditioned medium or leptin, plus various inhibitors. EAT-derived leptin from MetS rats promoted mitochondrial oxidative stress and dysfunction, induced mitochondrial pathway apoptosis, and inhibited cell viability in H9C2 cardiomyoblasts via the protein kinase C/reduced nicotinamide adenine dinucleotide phosphate oxidase/reactive oxygen species (PKC/NADPH oxidase/ROS) pathway. EAT-derived leptin from MetS rats stimulated inflammation in H9C2 cardiomyocytes by promoting activator protein 1 nuclear translocation via the PKC/NADPH oxidase/ROS pathway. Leptin promoted the interaction between p-p47phox and gp91phox in H9C2 cardiomyocytes via protein kinase C, activating nicotinamide adenine dinucleotide phosphate oxidase, increasing reactive oxygen species generation, and inhibiting cell viability. Conclusions EAT-derived leptin induces MetS-related myocardial injury through the following 2 cooperative ways via PKC/NADPH oxidase/ROS pathway: (1) inducing mitochondrial pathway apoptosis by promoting mitochondrial oxidative stress and dysfunction; and (2) stimulating inflammation by promoting activator protein 1 nuclear translocation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。