Segmental Bronchial Allergen Challenge Elicits Distinct Metabolic Phenotypes in Allergic Asthma.

节段性支气管过敏原激发可引起过敏性哮喘患者不同的代谢表型

阅读:6
作者:Zhu Yanlong, Esnault Stephane, Ge Ying, Jarjour Nizar N, Brasier Allan R
Asthma is a complex syndrome associated with episodic decompensations provoked by aeroallergen exposures. The underlying pathophysiological states driving exacerbations are latent in the resting state and do not adequately inform biomarker-driven therapy. A better understanding of the pathophysiological pathways driving allergic exacerbations is needed. We hypothesized that disease-associated pathways could be identified in humans by unbiased metabolomics of bronchoalveolar fluid (BALF) during the peak inflammatory response provoked by a bronchial allergen challenge. We analyzed BALF metabolites in samples from 12 volunteers who underwent segmental bronchial antigen provocation (SBP-Ag). Metabolites were quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS) followed by pathway analysis and correlation with airway inflammation. SBP-Ag induced statistically significant changes in 549 features that mapped to 72 uniquely identified metabolites. From these features, two distinct inducible metabolic phenotypes were identified by the principal component analysis, partitioning around medoids (PAM) and k-means clustering. Ten index metabolites were identified that informed the presence of asthma-relevant pathways, including unsaturated fatty acid production/metabolism, mitochondrial beta oxidation of unsaturated fatty acid, and bile acid metabolism. Pathways were validated using proteomics in eosinophils. A segmental bronchial allergen challenge induces distinct metabolic responses in humans, providing insight into pathogenic and protective endotypes in allergic asthma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。