The principal context of this study was a combined heat and power plant (CHPP) system, with the aim of conducting the multi-objective optimization (MOO) of an energy, exergy, and economic (3E) analysis. To meet rising energy demands, optimal operational conditions for CHPPs are required. Enhancements to plant equipment and improvements in plant design are critical. CHPP design has its basis in the first law of thermodynamics; the losses from such systems are therefore most accurately determined via exergy analysis. Energy quality can also be assessed using exergy analysis. Consequently, it is possible for the designers of thermodynamic systems to apply the findings to achieve improved efficiencies. The economic aspect of CHPP optimization is also critical because the structure is highly complex. This study therefore makes use of a Henry gas solubility optimization (HGSO) algorithm in a CHPP base case situation to achieve MOO. In this particular CHPP system, the respective enthalpy and exergy efficiencies were increased in the case of the boiler (7.22% and 7.21%), the turbogenerator (4.52% and 6.84%), and the condenser (3.06% and 31.37%). In this study, four scenarios are proposed, whereby the design of a heat exchanger network (HEN) aims to optimize energy savings and economic performance through analysis of the profits generated through electricity and steam production. A payback period of around two to three years was reported, where the cost increase under optimal conditions was found to be 0.3824%. The results demonstrate clearly that the tested techniques may be appropriate in practical scenarios when enhancing CHPP performance in the context of the base case.
Combined heat and power plant using a multi-objective Henry gas solubility optimization algorithm: A thermodynamic investigation of energy, exergy, and economic (3E) analysis.
采用多目标亨利气体溶解度优化算法的热电联产装置:能量、火用和经济(3E)分析的热力学研究
阅读:8
作者:Sukpancharoen Somboon, Prasartkaew Boonrit
| 期刊: | Heliyon | 影响因子: | 3.600 |
| 时间: | 2021 | 起止号: | 2021 Sep 21; 7(9):e08003 |
| doi: | 10.1016/j.heliyon.2021.e08003 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
