Novel causative RYR2 indel variant with exon and intron involvement inducing exon 13 skipping in a family exhibiting catecholaminergic polymorphic ventricular tachycardia.

阅读:7
作者:Shin Ju Hyeon, Park Taek Kyu, Chang Sung-A, Jang Shin Yi, Huh June, Seol Chang Ahn, Park Kyoung-Jin, Kim Sung Hoon, Kim Duk-Kyung, Gwag Hye Bin, Jang Mi-Ae
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a genetic disorder marked by exercise or stress-induced arrhythmias that lead to syncope or sudden cardiac death. Mutations of the RYR2 gene can cause either CPVT or calcium release deficiency syndrome, with varying impacts on calcium release in cardiomyocytes. These mutations are predominantly missense variants associated with a gain-of-function mechanism. In this report, we present a novel pathogenic RYR2 indel variant in a family afflicted with CPVT based on comprehensive molecular investigations. The proband was a 15-year-old girl who suffered a cardiac arrest during exercise and exhibited frequent premature ventricular beats on a treadmill test, which was consistent with CPVT. Using next-generation sequencing and Sanger sequencing, a novel RYR2 indel variant, NM_001035.3:c.1006-44_1007delinsATTTTG, was identified. Sanger sequencing confirmed the presence of this variant in her mother, who also showed frequent premature ventricular beats on a treadmill test. Further RNA analysis revealed that this variant caused aberrant splicing, resulting in the skipping of exon 13 (r.1006_1170del), which would disrupt the intramolecular domain interactions. This discovery led to the classification of the variant as a likely pathogenic variant. We identified a novel RYR2 indel variant responsible for CPVT and expanded the mutational spectrum of RYR2-related CPVT, emphasizing the importance of comprehensive genetic approaches for variant classification.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。