Role of the intestinal microbiome in low-density polyethylene degradation by caterpillar larvae of the greater wax moth, Galleria mellonella.

大蜡螟幼虫肠道微生物群在低密度聚乙烯降解中的作用

阅读:4
作者:Cassone Bryan J, Grove Harald C, Elebute Oluwadara, Villanueva Sachi M P, LeMoine Christophe M R
Recently, a few insects, including the caterpillar larva of the greater wax moth Galleria mellonella, have been identified as avid 'plastivores'. These caterpillars are able to ingest and metabolize polyethylene at unprecedented rates. While it appears that G. mellonella plays an important role in the biodegradation process, the contribution of its intestinal microbiome remains poorly understood and contested. In a series of experiments, we present strong evidence of an intricate relationship between an intact microbiome, low-density polyethylene (LDPE) biodegradation and the production of glycol as a metabolic by-product. First, we biochemically confirmed that G. mellonella larvae consume and metabolize LDPE, as individual caterpillars fed on polyethylene excreted glycol, but those excretions were reduced by antibiotic treatment. Further, while the gut bacterial communities remained relatively stable regardless of diet, we showed that during the early phases of feeding on LDPE (24-72 h), caterpillars exhibited increased microbial abundance relative to those starved or fed on their natural honeycomb diet. Finally, by isolating and growing gut bacteria with polyethylene as their exclusive carbon source for over 1 year, we identified microorganisms in the genus Acinetobacter that appeared to be involved in this biodegradation process. Taken collectively, our study indicates that during short-term exposure, the intestinal microbiome of G. mellonella is intricately associated with polyethylene biodegradation in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。