Role of Wnt/β-catenin signaling pathway in ameloblast differentiation in relevance to dental fluorosis

Wnt/β-catenin信号通路在氟斑牙成釉质细胞分化中的作用

阅读:5
作者:Tingling Zou, Lan Ma, Lili Gu, Shuhua Xi, Kaiqiang Zhang, Xiaoying Guo

Abstract

Excess consumption of fluoride during the development of tooth enamel will cause dental fluorosis, but the exact molecular mechanisms remain to be elucidated. Circadian rhythm is implicated in many physiological processes and various diseases. There is increasing evidence indicates that ameloblast differentiation is under the control of clock genes. However, it has not been reported whether fluoride regulates ameloblast differentiation through clock genes and the downstream PPARγ. To explore the effect of fluoride on ameloblast differentiation and the underlying regulatory mechanism, we used both rat dental fluorosis model and an ameloblast cell line LS8 to conduct a series of experiments. Our results showed that fluoride significantly reduced the expression of PCNA, RUNX2 and MMP9 in rat ameloblasts and LS8 cells (P < 0.05). Fluoride increased nuclear translocation of β-catenin in vivo and in vitro, and 0.1 μg/ml Dkk1 pretreatment ameliorated the decreased expression of CXXC5, RUNX2 and MMP9 induced by fluoride. Furthermore, we found fluoride significantly inhibited the expression of Clock, Bmal1, Per2 and PPARγ in rat mandibular ameloblasts and LS8 cells by immunostaining, qPCR and Western blot (P < 0.05). Flow cytometry analysis showed that fluoride promoted ROS generation. Remarkably, 50 μM resveratrol significantly ameliorated the inhibitory effect of fluoride on ameloblast differentiation markers, clock genes and PPARγ, and inhibited the Wnt/β-catenin signaling (P < 0.05). Taken together, these findings suggested that excessive fluoride promoted ROS generation, leading to the inhibition of clock genes, which resulted in reduced PPARγ and activated Wnt/β-catenin signaling pathway, thus inhibiting ameloblast differentiation and matrix degradation. This study provides a better understanding of the molecular mechanism of enamel defects in dental fluorosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。