Autophagy-dependent Na+-K+-ATPase signalling and abnormal urate reabsorption in hyperuricaemia-induced renal tubular injury

高尿酸血症引起的肾小管损伤中自噬依赖的 Na+-K+-ATPase 信号传导和尿酸重吸收异常

阅读:6
作者:Haochen Guan, Huagang Lin, Xiaojun Wang, Ying Xu, Yuqi Zheng, Xun Zhou, Xuehong Diao, Zhibin Ye, Jing Xiao

Abstract

Increasing evidence indicates that hyperuricaemia (HUA) is not only a result of decreased renal urate excretion but also a contributor to kidney disease. Na+-K+-ATPase (NKA), which establishes the sodium gradient for urate transport in proximal tubular epithelial cells (PTECs), its impairment leads to HUA-induced nephropathy. However, the specific mechanism underlying NKA impairment-mediated renal tubular injury and increased urate reabsorption in HUA is not well understood. In this study, we investigated whether autophagy plays a key role in the NKA impairment signalling and increased urate reabsorption in HUA-induced renal tubular injury. Protein spectrum analysis of exosomes from the urine of HUA patients revealed the activation of lysosomal processes, and exosomal expression of lysosomal-associated membrane protein-2 was associated with increased serum levels and decreased renal urate excretion in patients. We demonstrated that high uric acid (UA) induced lysosome dysfunction, autophagy and inflammation in a time- and dose-dependent manner and that high UA and/or NKA α1 siRNA significantly increased mitochondrial abnormalities, such as reductions in mitochondrial respiratory complexes and cellular ATP levels, accompanied by increased apoptosis in cultured PTECs. The autophagy inhibitor hydroxychloroquine (HCQ) ameliorated NKA impairment-mediated mitochondrial dysfunction, Nod-like receptor pyrin domain-containing protein 3 (NLRP3)-interleukin-1β (IL-1β) production, and abnormal urate reabsorption in PTECs stimulated with high UA and in rats with oxonic acid (OA)-induced HUA. Our findings suggest that autophagy plays a pivotal role in NKA impairment-mediated signalling and abnormal urate reabsorption in HUA-induced renal tubular injury and that inhibition of autophagy by HCQ could be a promising treatment for HUA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。