Chemokine ligand 12(CXCL12) mediates signaling through chemokine receptor 4(CXCR4), which is essential for the homing and maintenance of Hematopoietic stem cells (HSCs) in the bone marrow. FLT3-ITD mutations enhance cell migration toward CXCL12, providing a drug resistance mechanism underlying the poor effects of FLT3-ITD antagonists. However, the mechanism by which FLT3-ITD mutations regulate the CXCL12/CXCR4 axis remains unclear. We analyzed the relationship between CXCR4 expression and the FLT3-ITD mutation in 466 patients with de novo AML to clarify the effect of FLT3-ITD mutations on CXCR4 expression in patients with AML. Our results indicated a positive correlation between the FLT3-ITD mutant-type allelic ratio (FLT3-ITD MR) and the relative fluorescence intensity (RFI) of CXCR4 expression in patients with AML (râ=â0.588, Pââ¤â0.0001). Moreover, the levels of phospho(p)-STAT5, Pim-1 and CXCR4 proteins were positively correlated with the FLT3-ITD MR, and the mRNA levels of CXCR4 and Pim-1 which has been revealed as one of the first known target genes of STAT5, were upregulated with an increasing FLT3-ITD MR(Pâ<â0.05). Therefore, FLT3-ITD mutations upregulate the expression of CXCR4 in patients with AML, and the downstream signaling intermediates STAT5 and Pim-1 are also involved in this phenomenon and subsequently contribute to chemotherapy resistance and disease relapse in patients with AML. However, the mechanism must be confirmed in further experiments. The combination of CXCR4 antagonists and FLT3 inhibitors may improve the sensitivity of AML cells to chemotherapy and overcome drug resistance.
The FLT3-ITD mutation and the expression of its downstream signaling intermediates STAT5 and Pim-1 are positively correlated with CXCR4 expression in patients with acute myeloid leukemia.
在急性髓系白血病患者中,FLT3-ITD 突变及其下游信号中间体 STAT5 和 Pim-1 的表达与 CXCR4 表达呈正相关
阅读:5
作者:Cao Tingyong, Jiang Nenggang, Liao Hongyan, Shuai Xiao, Su Jun, Zheng Qin
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2019 | 起止号: | 2019 Aug 21; 9(1):12209 |
| doi: | 10.1038/s41598-019-48687-z | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
