Differential Gene Expression Analysis of SoCBL Family Calcineurin B-like Proteins: Potential Involvement in Sugarcane Cold Stress.

SoCBL家族钙调磷酸酶B样蛋白的差异基因表达分析:可能参与甘蔗冷胁迫

阅读:4
作者:Zhang Bao-Qing, Song Xiu-Peng, Zhang Xiao-Qiu, Huang Yu-Xin, Liang Yong-Jian, Zhou Shan, Yang Cui-Fang, Yang Li-Tao, Huang Xing, Li Yang-Rui
Sugarcan e is a major crop for sugar and biofuel production and is cultivated in tropical and subtropical areas worldwide. Sugarcane growth is constrained because of winter's low-temperature stress, and cold resistance is an important limitation in sugarcane growth enhancement. Therefore, in this study, we identified a gene involved in the low-temperature stress response of sugarcane. Calcineurin B-like (CBL) protein is a calcium signal receptor involved in the cold stress response. Five sugarcane CBL genes were cloned, sequenced, and named SoCBL1, SoCBL3, SoCBL5, SoCBL6, and SoCBL9. The protein sequences of these genes were analyzed. The calculated molecular weight of these proteins was 24.5, 25.9, 25.2, 25.6, and 26.3 kD, respectively. Subcellular localization analysis revealed that SoCBL1, SoCBL3, SoCBL6, and SoCBL9 were situated in the cytoplasm, while SoCBL5 was present in mitochondria. Secondary structure analysis showed that these five CBL proteins had similar secondary structures. Conserved domain analysis displayed that each sugarcane CBL protein contained three conserved EF domains. According to the self-expanding values of the phylogenetic tree, the CBL gene family was divided into four groups. The CBL1 and CBL9 genes were classified into one group, illustrating that these two genes might possess a similar function. The expression analysis of the SoCBL gene under low temperatures showed that SoCBL3 and SoCBL5 were affected significantly, while SoCBL1 and SoCBL9 were less affected. These results demonstrate that the CBL genes in sugarcane have similar characteristics and present differences in genetic diversity and gene expression response to low temperatures. Therefore, these genes might be novel candidates for fighting cold stress in sugarcane.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。