Presence of Plasmodium falciparum strains with artemisinin-resistant K13 mutation C469Y in Busia County, Western Kenya.

在肯尼亚西部布西亚县发现了具有青蒿素耐药性 K13 突变 C469Y 的恶性疟原虫株

阅读:8
作者:Makau Mark, Kanoi Bernard N, Mgawe Calvin, Maina Michael, Bitshi Mimie, Too Edwin K, Naruse Taeko K, Abkallo Hussein M, Waweru Harrison, Adung'o Ferdinand, Kaneko Osamu, Gitaka Jesse
Malaria remains a key health and economic problem, particularly in sub-Saharan Africa. The emergence of artemisinin drug resistance (ART-R) parasite strains poses a serious threat to the control and elimination of this scourge. This is because artemisinin-based combination therapies (ACTs) remain the first-line treatment in the majority of malaria-endemic regions in Sub-Saharan Africa. Certain single-nucleotide polymorphisms in the propeller domains of Plasmodium falciparum Kelch 13 protein (K13) have been associated with delayed parasite clearance in vivo and in vitro. These mutations serve as vital molecular markers for tracking the emergence and dispersion of resistance. Recently, there have been increasing reports of the emergence and spread of P. falciparum ART-R parasites in the Eastern Africa region. This necessitates continued surveillance to best inform mitigation efforts. This study investigated the presence of all reported mutations of K13 propeller domains in the parasite population in Busia County, Kenya, a known malaria-endemic region. Two hundred twenty-six participants with microscopically confirmed uncomplicated malaria were recruited for this study. They were treated with artemether-lumefantrine under observation for the first dose, and microscopic examination was repeated 1 day later after ensuring the participants had taken the second and third doses. P. falciparum DNA from all samples underwent targeted amplification of the K13 gene using a semi-nested PCR approach, followed by Sanger sequencing. The recently validated ART-R K13 mutation C469Y was identified in three samples. These three samples were among 63 samples with a low reduction in parasitemia on day 1, suggesting day 1 parasitemia reduction rate is a useful parameter to enrich the ART-R parasites for further analysis. Our findings highlight the need for continuous surveillance of ART-R in western Kenya and the region to determine the spread of ART-R and inform containment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。