BACKGROUND: Nested PCRs based on the Plasmodium 18s-rRNA gene have been extensively used for human malaria diagnosis. However, they are not practical when large quantities of samples need to be processed, further there have been challenges in the performance and when interpreting results, especially when submicroscopic infections are analysed. Here the use of "direct PCR" was investigated with the aim of improving diagnosis in the malaria elimination era. METHODS: The performance of the Plasmodium cytochrome oxidase III gene (COX-III) based novel malaria detection strategies (direct nested PCR and direct single PCR) were compared using a 18s-rRNA direct nested PCR as a reference tool. Evaluations were based on sensitivity, specificity and the ability to detect mixed infections using control blood spot samples and field collected blood samples with final species diagnosis confirmation by sequencing. RESULTS: The COX-III direct PCR (limit of detection: 0.6-2 parasites/μL) was more sensitive than the 18s-rRNA direct nested PCR (limit of detection: 2-10 parasites/μL). The COX-III direct PCR identified all 21 positive controls (no mixed infections detected) while the 18s-rRNA direct nested PCR identified 18/21 (including four mixed infections). Different concentrations of simulated mixed infections (Plasmodium vivax and Plasmodium falciparum) suggest that the COX-III direct PCR detects only the predominant species. When the 18s-rRNA direct nested PCR was used to detect Plasmodium in field collected bloods spots (n = 3833), there was discrepancy in the results from the genus PCR (16 % positive) and the species-specific PCR (5 % positive). Further, a large portion of a subset of these positive samples (93 % for genus and 60 % for P. vivax), did not align with Plasmodium sequences. In contrast, the COX-III direct PCR clearly identified (single bands confirmed with sequencing) 2 % positive Plasmodium samples including P. vivax, P. falciparum, Plasmodium malariae and Plasmodium ovale wallikeri. CONCLUSIONS: The COX-III single direct PCR is an alternative method for accurate detection of Plasmodium microscopic and submicroscopic infections in humans, especially when a large number of samples require screening. This PCR does not require DNA isolation, is sensitive, quick, produces confident/clear results, identifies all the Plasmodium species infecting humans, and is cost-effective.
Human malaria diagnosis using a single-step direct-PCR based on the Plasmodium cytochrome oxidase III gene.
利用基于疟原虫细胞色素氧化酶 III 基因的一步直接 PCR 进行人类疟疾诊断
阅读:5
作者:Echeverry Diego F, Deason Nicholas A, Davidson Jenna, Makuru Victoria, Xiao Honglin, Niedbalski Julie, Kern Marcia, Russell Tanya L, Burkot Thomas R, Collins Frank H, Lobo Neil F
| 期刊: | Malaria Journal | 影响因子: | 3.000 |
| 时间: | 2016 | 起止号: | 2016 Feb 29; 15:128 |
| doi: | 10.1186/s12936-016-1185-x | 种属: | Human |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
