Although the fighting behaviour in gamecocks has evolved because of artificial selection, it is unknown whether the selection for aggressiveness affects neurotransmitter levels in the avian central nervous system. We sought to identify the source and origin of this trait. We collected the brain samples from 6 female Shamo gamecocks and 5 Shaver Brown chickens (control; bred for egg production). The midbrain levels of norepinephrine (NE) were significantly higher in Shamo gamecocks (Pâ=â0.0087) than in the controls. Moreover, alleles encoding adrenergic receptors differed between the breeds in terms of response to NE. Gene mutations specific to Shamo and potentially associated with fighting behaviour were in sites T440N of ADRα1D; V296I of ADRα2A; and T44I, Q232R, and T277M of ADRβ2. The evolutionary analysis indicated that the ADRβ2 (T44I and Q232R) mutations were heritable in all Galliformes, whereas the T440N mutation of ADRα1D and V296I mutations of ADRα2A were unique to Shamo and originated by artificial selection. A high NE level may confer a selective advantage by enabling gamecocks to be aggressive and pain tolerant. Therefore, the strong fighting behaviour of Shamo has resulted from a combination of naturally inherited and mutant genes derived by artificial selection.
Analysis of the source of aggressiveness in gamecocks.
分析斗鸡攻击性来源
阅读:6
作者:Komiyama Tomoyoshi, Yoshikawa Masanobu, Yokoyama Keiko, Kobayashi Hiroyuki
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2020 | 起止号: | 2020 Apr 24; 10(1):7005 |
| doi: | 10.1038/s41598-020-63961-1 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
