Phylogenetic Analysis, Pulse-Amplitude-Modulated (PAM) Fluorometry Measuring Parameter Optimization, and Cell Wall Disintegration of Chlorella vulgaris K-01.

小球藻 K-01 的系统发育分析、脉冲幅度调制 (PAM) 荧光测量参数优化和细胞壁崩解

阅读:6
作者:Zhang Zhenyu, Zhang Xiaoli, Wu Yinqiang, Yao Li-Hua, Fu Pengcheng
Chlorella is a rich source of nutrients. In addition to its nutritional value, it exhibits versatile biological activities. New strains have been extensively identified and investigated in recent years to expand the potential of Chlorella. The accurate measurement of pulse-amplitude-modulated (PAM) fluorometry parameters and effective microalgal cell lysis are foundational for advanced studies of novel Chlorella species. In this study, ribosomal small subunit (SSU)-internal transcribed spacer (ITS) phylogenetic analysis and internal transcribed spacer 2 (ITS2) secondary structure analysis were employed to identify a new Chlorella species. The dark adaptation time, the duration of the saturation pulse, the intensity of actinic light, and the duration of actinic light exposure for PAM fluorometry measurements were optimized. Different conditions of ultrasonication and high-pressure homogenization (HPH) for microalgal cell lysis were compared. Chlorella vulgaris K-01 was identified. The suitable duration for dark adaptation, the saturation pulse, and the actinic light were 15 min, 200 milliseconds, and 30 s, respectively. The suitable intensity of actinic light was 191 μE/(m(2)·s). For microalgal cell lysis, HPH could achieve 98.65% cell lysis efficiency at 30 kpsi (207 MPa), whereas ultrasonication attained an efficiency of 45.47% (300 W for 30 min). These results facilitate further study on the physiology and the composition of Chlorella vulgaris K-01.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。