Extracellular ATP (eATP) inhibits the progression of endometriosis and enhances the immune function of macrophages

细胞外ATP(eATP)抑制子宫内膜异位症进展并增强巨噬细胞的免疫功能

阅读:14
作者:Ling Zhou, E Cai, Huiping Liu, Hongyan Cheng, Xue Ye, Honglan Zhu, Xiaohong Chang

Background

Extracellular adenosine triphosphate (eATP) is an important inflammatory mediator that can boost the antitumour immune response, but its role in endometriosis remains unknown. We hypothesized that eATP could inhibit endometriosis cell function both directly and indirectly through macrophages.

Conclusion

eATP induces endometriotic epithelial cell death and enhances the immune function of macrophages to inhibit the progression of endometriosis, while eutopic endometrium is not affected. eATP treatment may serve as a nonhormonal therapeutic strategy for endometriosis.

Methods

Peritoneal and cyst fluid from endometriosis patients and non-endometriosis controls was collected to measure eATP levels. The addition of eATP was performed to explore its effects on endometriotic cell and macrophage functions, including cell proliferation, apoptosis, pyroptosis, mitochondrial membrane potential, phagocytosis, and the production of inflammatory cytokines and reactive oxygen species. A coculture of endometriotic epithelial cells and U937 macrophages was established, followed by P2X7 antagonist and eATP treatment. Endometriosis model eATP-treated rats were used to evaluate in situ cell death and macrophage marker expression.

Results

The pelvic microenvironment of endometriosis patients shows high eATP levels, which could induce endometriotic epithelial cell apoptosis and pyroptosis and significantly inhibit cell growth via the MAPK/JNK/Akt pathway. eATP treatment ameliorated endometriosis-related macrophage dysfunction and promoted macrophage recruitment. eATP treatment in the presence of macrophages exerted a stronger cytotoxic effect on endometriotic epithelial cells by regulating P2X7. eATP treatment effectively induced cell death in an endometriosis rat model and prominently increased the macrophage number without affecting the eutopic endometrium.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。