Development of a homologous expression system for and systematic site-directed mutagenesis analysis of thurincin H, a bacteriocin produced by Bacillus thuringiensis SF361.

开发同源表达系统,并对苏云金芽孢杆菌SF361产生的细菌素苏云金素H进行系统定点诱变分析

阅读:6
作者:Wang Gaoyan, Manns David C, Churey John J, Worobo Randy W
Thurincin H is an antimicrobial peptide produced by Bacillus thuringiensis SF361. With a helical back bone, the 31 amino acids of thurincin H form a hairpin structure maintained by four pairs of very unique sulfur-to-α-carbon thioether bonds. The production of thurincin H depends on a putative gene cluster containing 10 open reading frames. The gene cluster includes three tandem structural genes (thnA1, thnA2, and thnA3) encoding three identical 40-amino-acid thurincin H prepeptides and seven other genes putatively responsible for prepeptide processing, regulation, modification, exportation, and self-immunity. A homologous thurincin H expression system was developed by transforming a thurincin H-deficient host with a novel expression vector, pGW133. The host, designated B. thuringiensis SF361 ΔthnA1 ΔthnA2 ΔthnA3, was constructed by deletion of the three tandem structural genes from the chromosome of the natural thurincin H producer. The thurincin H expression vector pGW133 was constructed by cloning the thurincin H native promoter, thnA1, and a Cry protein terminator into the Escherichia coli-B. thuringiensis shuttle vector pHT315. Thirty-three different pGW133 variants, each containing a different point mutation in the thnA1 gene, were generated and separately transformed into B. thuringiensis SF361 ΔthnA1 ΔthnA2 ΔthnA3. Those site-directed mutants contained either a single radical or conservative amino acid substitution on the thioether linkage-forming positions or a radical substitution on all other nonalanine amino acids. The bacteriocin activities of B. thuringiensis SF361 ΔthnA1 ΔthnA2 ΔthnA3 carrying different pGW133 variants against three different indicator strains were subsequently compared.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。