Scale-Up and Long-Term Study of Electrodialysis with Ultrafiltration Membrane for the Separation of a Herring Milt Hydrolysate

超滤膜电渗析分离鲱鱼鱼白水解液的放大和长期研究

阅读:4
作者:Jacinthe Thibodeau, Noémie Benoit, Véronique Perreault, Laurent Bazinet

Abstract

Electrodialysis with ultrafiltration membrane (EDUF) was selected to separate a herring milt hydrolysate (HMH) in a scale-up and long-term study for the recovery of bioactive peptides. The scale-up was performed to maximise peptide recovery by placing a total membrane area of 0.08 m2 for each anionic and cationic compartment. Twelve consecutive runs were carried out, for a total of 69 h, with minimal salt solution cleaning in between experiments. The final peptide migration rate showed that cationic peptides had a higher average migration rate (5.2 ± 0.8 g/m2·h), compared to anionic peptides (4.7 ± 1.1 g/m2·h). Migration was also selective according to peptide identifications and molecular mass distribution where only small molecular weights were found (<1000 Da) in both recovery compartments. The areal system resistance slightly decreased during each run and the averaged values were stable in between experiments since they were all found in the 95% confidence interval. In addition, total relative energy consumption was quite consistent with an average value of 39.95 ± 6.47 Wh/g all along the 12 consecutive runs. Finally, according to membrane characterization, there was no visual fouling on the different membranes present in the EDUF cell after 69 h of treatment. This may be due to the salt cleaning in between experiments which allowed removal of peptides from the membranes, thus allowing recovering initial system working parameters at the beginning of each run. The entire process was revealed to be very consistent and repeatable in terms of peptide migration, global system resistance, and energy consumption. To the best of our knowledge, this is the first time such EDUF conditions (membrane surface, duration, and minimal salt cleaning between experiments) are being tested on a complex hydrolysate.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。