Membrane Nanoscopic Organization of D2L Dopamine Receptor Probed by Quantum Dot Tracking

通过量子点追踪探测 D2L 多巴胺受体的膜纳米级组织

阅读:4
作者:Oleg Kovtun, Ruben Torres, Laurel G Bellocchio, Sandra Jean Rosenthal

Abstract

The role of lateral mobility and nanodomain organization of G protein-coupled receptors in modulating subcellular signaling has been under increasing scrutiny. Investigation of D2 dopamine receptor diffusion dynamics is of particular interest, as these receptors have been linked to altered neurotransmission in affective disorders and represent the primary target for commonly prescribed antipsychotics. Here, we applied our single quantum dot tracking approach to decipher intrinsic diffusion patterns of the wild-type long isoform of the D2 dopamine receptor and its genetic variants previously identified in several cohorts of schizophrenia patients. We identified a subtle decrease in the diffusion rate of the Val96Ala mutant that parallels its previously reported reduced affinity for potent neuroleptics clozapine and chlorpromazine. Slower Val96Ala variant diffusion was not accompanied by a change in receptor-receptor transient interactions as defined by the diffraction-limited quantum dot colocalization events. In addition, we implemented a Voronoї tessellation-based algorithm to compare nanoclustering of the D2 dopamine receptor to the dominant anionic phospholipid phosphatidylinositol 4,5-bisphosphate in the plasma membrane of live cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。