Management of Black Root Disease-Causing Fungus Fusarium solani CRP1 by Endophytic Bacillus siamensis CNE6 through Its Metabolites and Activation of Plant Defense Genes.

内生芽孢杆菌CNE6通过其代谢产物和激活植物防御基因来控制引起黑根病的真菌茄病镰刀菌CRP1

阅读:9
作者:Gorai Pralay Shankar, Ghosh Ranjan, Ghosh Suvranil, Samanta Smriti, Sen Animesh, Panja Suraj, Gond Surendra Kumar, Mandal Narayan Chandra
Black root rot disease of Cicer arietinum L. is accountable for substantial loss in chickpea production worldwide. Endophytic Bacillus siamensis CNE6 has previously shown multifaceted plant growth-promoting, broad-spectrum antifungal, and chickpea plant-colonizing potential. In the present study, the strain Bacillus siamensis CNE6 was used for controlling black root rot disease caused by Fusarium solani CRP1 in chickpea. CNE6 showed strong antagonistic potential against CRP1 both in vivo and in vitro. Scanning electron microscopic studies indicated cellular deformation of CRP1 due to production of β-glucanase, protease, and other secondary metabolites. A total of five compounds were detected from the cell-free supernatant (CFS) of the ethyl acetate (EA) fraction of CNE6 through gas chromatography-mass spectrometry analysis. A confocal microscopic study demonstrated strong inhibition of biofilm formation of the pathogen CRP1 by the EA fraction of CFS of CNE6. Molecular docking analysis revealed that one compound, (2E)-6-methoxy-2-[(4-methoxyphenyl)methylidene]-2,3-dihydro-1-benzofuran-3-one, may inhibit the activity of lanosterol 14-alpha demethylase, which is involved in ergosterol biosynthesis and beta-tubulin assembling. In vivo experiments also showed the efficacy of CNE6 for increasing chickpea growth as well as upregulation of four defense genes (CHI1, PAMP, PR2B, and TF1082) upon pathogenic challenge. Thus, our results strongly suggest a positive role for CNE6 as a prospective biocontrol agent for combating Fusarium solani in chickpea. IMPORTANCE The present work was undertaken to explore an effective biocontrol agent against the destructive black root rot disease of chickpea. We have used an efficient bacterial endophyte, CNE6, which can colonize in the chickpea root system, produce secondary metabolites and enzymes to degrade pathogenic cellular integrity, inhibit pathogenic establishment by rupturing biofilm formation, and induce host immunity upon treatment. Interaction of the bacterial metabolite was also observed with lanosterol 14-alpha demethylase, which is an important component in fungal membrane functioning. Being an endophyte, Bacillus siamensis CNE6 fulfills a suitable criterion as a biocontrol agent to control black root rot disease in chickpea and has huge prospects for use commercially.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。