Emodin Attenuates Lipopolysaccharide-Induced Injury via Down-Regulation of miR-223 in H9c2 Cells

大黄素通过下调 H9c2 细胞中的 miR-223 减轻脂多糖诱导的损伤

阅读:4
作者:Yuping Yang, Zijun Jiang, Dong Zhuge

Abstract

Emodin is a natural product extracted from Rheum palmatum. There are few recent studies on emodin in the treatment of myocarditis. This study aimed to investigate the effect of emodin on lipopolysaccharide (LPS)-induced inflammatory injury in cardiomyocytes. H9c2 cells were treated with 10 μM of LPS and different concentrations (0, 1, 5, 10, 15, and 20 μM) of emodin. The expression of miR-223 was changed by transient transfection. Thereafter, cell viability, apoptosis, the expression of CyclinD1 and Jnk-associated proteins, and the release of pro-inflammatory factors were assessed by cell Counting Kit-8, flow cytometry analysis, quantitative real-time polymerase chain reaction Western blot, and enzyme-linked immunosorbent assay respectively. The results showed that 20 μM of emodin significantly decreased H9c2 cells viability. LPS significantly damaged H9c2 cells, as cell viability was reduced, CyclinD1 was down-regulated, apoptosis was induced, the release of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-alpha were increased, and the phosphorylation of Jnk and c-Jun were promoted. Emodin protected H9c2 cells against LPS-induced inflammatory injury. miR-223 expression was significantly up-regulated by LPS exposure, while emodin lessened this up-regulation. LPS-injured H9c2 cells were attenuated by the overexpression of miR-223; emodin has protective actions on LPS-injured H9c2 cells and targets. Besides, SP600125 (an inhibitor of Jnk) eliminated miR-223-modulated inflammatory injury in H9c2 cells. These data demonstrated that emodin could attenuate LPS-induced inflammatory injury and deactivate Jnk signaling pathway through down-regulation of miR-223.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。