De novo Whole-Genome Assembly of the 10-Gigabase Fokienia Hodginsii Genome to Reveal Differential Epigenetic Events Between Callus and Xylem.

从头组装 10 Gigabase 的 Fokienia Hodginsii 基因组,揭示愈伤组织和木质部之间的差异表观遗传事件

阅读:7
作者:Rong Jundong, Zheng Yushan, Zhang Zeyu, Zhang Jun, Gu Yuying, Hua Tian, Zhao Mengna, Fan Lili, Deng Zhiwen, Pan Yanmei, Li Bingjun, Chen Liguang, He Tianyou, Chen Lingyan, Ye Jing, Zhang Hangxiao, Gu Lianfeng
Fokienia hodginsii (F. hodginsii), belonging to the genus Fokienia of the Cupressaceae. F. hodginsii has significant application value due to its wood properties and great research value in evolutionary studies as a gymnosperm. However, the genome of F. hodginsii remains unknown due to the large size of gymnosperms genome. Pacific Bioscience sequencing, Hi-C mapping, whole-genome Bisulfite Sequencing (BS-Seq), long-read isoform sequencing (Iso-Seq), direct RNA sequencing (DRS), quantitative proteomics, and metabonomics analysis are employed to facilitate genome assembly, gene annotation, and investigation into epigenetic mechanisms. In this study, the 10G F. hodginsii genome is assembled into 11 chromosomes. Furthermore, 50 521 protein-coding genes are annotated and determined that 65% of F. hodginsii genome comprises repetitive sequences. It is discovered that transposable element (TE)-including introns is associated with higher expression. The DNA methylome of F. hodginsii reveals that xylem has a higher DNA methylation level compared to callus. Moreover, DRS reveals the significant alterations in RNA full-length ratio, which potentially associated with poly(A) length (PAL) and alternative polyadenylation (APA). Finally, the morphology measurement and metabonomics analysis revealed the difference of 14 cultivars. In summary, the genomes and epigenetics datasets provide a molecular basis for callus formation in the gymnosperm family.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。