The etherase system of Novosphingobium sp. MBES04 functions as a sensor of lignin fragments through phenylpropanone production to induce specific transcriptional responses.

新鞘氨醇杆菌 MBES04 的醚酶系统通过苯丙酮的产生来感应木质素片段,从而诱导特定的转录反应

阅读:6
作者:Kumagawa Eri, Katsumata Madoka, Nishimura Hiroshi, Watanabe Takashi, Ishii Shun'ichi, Ohta Yukari
The MBES04 strain of Novosphingobium accumulates phenylpropanone monomers as end-products of the etherase system, which specifically and reductively cleaves the β-O-4 ether bond (a major bond in lignin molecules). However, it does not utilise phenylpropanone monomers as an energy source. Here, we studied the response to the lignin-related perturbation to clarify the physiological significance of its etherase system. Transcriptome analysis revealed two gene clusters, each consisting of four tandemly linked genes, specifically induced by a lignin preparation extracted from hardwood (Eucalyptus globulus) and a β-O-4-type lignin model biaryl compound, but not by vanillin. The most strongly induced gene was a 2,4'-dihydroxyacetophenone dioxygenase-like protein, which leads to energy production through oxidative degradation. The other cluster was related to multidrug resistance. The former cluster was transcriptionally regulated by a common promoter, where a phenylpropanone monomer acted as one of the effectors responsible for gene induction. These results indicate that the physiological significance of the etherase system of the strain lies in its function as a sensor for lignin fragments. This may be a survival strategy to detect nutrients and gain tolerance to recalcitrant toxic compounds, while the strain preferentially utilises easily degradable aromatic compounds with lower energy demands for catabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。