The evolution of the karyotype and genome size was examined in species of Crepis sensu lato. The phylogenetic relationships, inferred from the plastid and nrITS DNA sequences, were used as a framework to infer the patterns of karyotype evolution. Five different base chromosome numbers (x = 3, 4, 5, 6, and 11) were observed. A phylogenetic analysis of the evolution of the chromosome numbers allowed the inference of x = 6 as the ancestral state and the descending dysploidy as the major direction of the chromosome base number evolution. The derived base chromosome numbers (x = 5, 4, and 3) were found to have originated independently and recurrently in the different lineages of the genus. A few independent events of increases in karyotype asymmetry were inferred to have accompanied the karyotype evolution in Crepis. The genome sizes of 33 Crepis species differed seven-fold and the ancestral genome size was reconstructed to be 1C = 3.44 pg. Both decreases and increases in the genome size were inferred to have occurred within and between the lineages. The data suggest that, in addition to dysploidy, the amplification/elimination of various repetitive DNAs was likely involved in the genome and taxa differentiation in the genus.
Descending Dysploidy and Bidirectional Changes in Genome Size Accompanied Crepis (Asteraceae) Evolution.
下降的异倍性以及基因组大小的双向变化伴随着菊科植物的进化
阅读:5
作者:Senderowicz Magdalena, Nowak Teresa, Rojek-Jelonek Magdalena, Bisaga Maciej, Papp Laszlo, Weiss-Schneeweiss Hanna, Kolano Bozena
| 期刊: | Genes | 影响因子: | 2.800 |
| 时间: | 2021 | 起止号: | 2021 Sep 17; 12(9):1436 |
| doi: | 10.3390/genes12091436 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
