Circulating sphingolipid biomarkers in models of type 1 diabetes.

1 型糖尿病模型中循环鞘脂生物标志物

阅读:7
作者:Fox Todd E, Bewley Maria C, Unrath Kellee A, Pedersen Michelle M, Anderson Robert E, Jung Dae Young, Jefferson Leonard S, Kim Jason K, Bronson Sarah K, Flanagan John M, Kester Mark
Alterations in lipid metabolism may contribute to diabetic complications. Sphingolipids are essential components of cell membranes and have essential roles in homeostasis and in the initiation and progression of disease. However, the role of sphingolipids in type 1 diabetes remains largely unexplored. Therefore, we sought to quantify sphingolipid metabolites by LC-MS/MS from two animal models of type 1 diabetes (streptozotocin-induced diabetic rats and Ins2(Akita) diabetic mice) to identify putative therapeutic targets and biomarkers. The results reveal that sphingosine-1-phosphate (So1P) is elevated in both diabetic models in comparison to respective control animals. In addition, diabetic animals demonstrated reductions in plasma levels of omega-9 24:1 (nervonic acid)-containing ceramide, sphingomyelin, and cerebrosides. Reduction of 24:1-esterfied sphingolipids was also observed in liver and heart. Nutritional stress via a high-fat diet also reduced 24:1 content in the plasma and liver of mice, exacerbating the decrease in some cases where diabetes was also present. Subcutaneous insulin corrected both circulating So1P and 24:1 levels in the murine diabetic model. Thus, changes in circulating sphingolipids, as evidenced by an increase in bioactive So1P and a reduction in cardio- and neuro-protective omega-9 esterified sphingolipids, may serve as biomarkers for type 1 diabetes and represent novel therapeutic targets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。