Model-to-crop conserved NUE Regulons enhance machine learning predictions of nitrogen use efficiency

模型到作物的保守氮素利用效率调控子增强了机器学习对氮素利用效率的预测。

阅读:1
作者:Ji Huang ,Chia-Yi Cheng ,Matthew D Brooks ,Tim L Jeffers ,Nathan M Doner ,Hung-Jui Shih ,Samantha Frangos ,Manpreet Singh Katari ,Gloria M Coruzzi
Systems biology aims to uncover gene regulatory networks (GRNs) for agricultural traits, but validating them in crops is challenging. We addressed this challenge by learning and validating model-to-crop transcription factor (TF) regulons governing nitrogen use efficiency (NUE). First, a fine-scale time-course nitrogen (N) response transcriptome analysis revealed a conserved temporal N response cascade in maize (Zea mays) and Arabidopsis (Arabidopsis thaliana). These data were used to infer time-based causal TF target edges in N-regulated GRNs. By validating 23 maize TFs in a cell-based TF-perturbation assay (Transient Assay Reporting Genome-wide Effects of Transcription factors), precision/recall analysis enabled us to prune high-confidence edges between ∼200 TFs/700 maize target genes. We next learned gene-to-NUE trait scores using XGBoost machine learning models trained on conserved N-responsive genes across maize and Arabidopsis accessions. By integrating NUE gene scores within our N-GRN, we ranked maize TFs based on a cumulative NUE Regulon score. NUE Regulons for top-ranked TFs were validated using the cell-based TARGET assay in maize (e.g. ZmMYB34/R3→24 targets) and the Arabidopsis ZmMYB34/R3 ortholog (e.g. AtDIV1→23 targets). The genes in this NUE Regulon significantly enhanced the ability of XGBoost models to predict NUE traits in both maize and Arabidopsis. Thus, our pipeline for identifying TF regulons that combines GRN inference, machine learning, and orthologous network regulons offers a strategic framework for crop trait improvement.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。