Long non-coding RNA HOTAIR mediates the switching of histone H3 lysine 27 acetylation to methylation to promote epithelial-to-mesenchymal transition in gastric cancer

长链非编码RNA HOTAIR介导组蛋白H3赖氨酸27乙酰化向甲基化转变,促进胃癌上皮间质转化

阅读:6
作者:Yue Song, Rui Wang, Li-Wei Li, Xi Liu, Yun-Fei Wang, Qi-Xue Wang, Qingyu Zhang

Abstract

HOX transcript antisense intergenic RNA (HOTAIR), a well‑known long non‑coding RNA, plays an important role in the regulation of epithelial‑to‑mesenchymal transition (EMT). In this study, we propose a novel mechanism through which HOTAIR promotes EMT by switching histone H3 lysine 27 acetylation to methylation at the E‑cadherin promoter, which induces the transcriptional inhibition of E‑cadherin. HOTAIR recruits polycomb repressive complex 2 (PRC2) to catalyze H3K27me3; however, whether HOTAIR is associated with the acetylation of histone H3 lysine 27, a marker of transcriptional activation, and the mechanisms through which HOTAIR triggers the metastasis of gastric cancer (GC) by epigenetic regulation remain largely unknown. In this study, HOTAIR knockdown significantly reversed EMT by increasing the expression of E‑cadherin in GC cells. Additionally, the loss of PRC2 activity induced by HOTAIR knockdown resulted in a global decrease in H3K27 methylation and an increase in H3K27 acetylation. Furthermore, HOTAIR recruits PRC2 (which consists of H3K27 methyltransferase EZH2, SUZ12 and EED), which may inhibit the reaction between the acetyltransferase CBP and H3K27 acetylation. On the whole, the findings of this study suggested that the HOTAIR‑mediated acetylation to methylation switch was associated with the transcriptional inhibition of E‑cadherin. HOTAIR can promote the development of GC through the epigenetic regulation of E‑cadherin, switching the state of the E‑cadherin promoter from the transcriptionally active to the transcriptionally repressive state.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。