Effective genome editing requires a sufficient dose of CRISPR-Cas9 ribonucleoproteins (RNPs) to enter the target cell while minimizing immune responses, off-target editing and cytotoxicity. Clinical use of Cas9 RNPs currently entails electroporation into cells ex vivo, but no systematic comparison of this method to packaged RNP delivery has been made. Here we compared two delivery strategies, electroporation and enveloped delivery vehicles (EDVs), to investigate the Cas9 dosage requirements for genome editing. Using fluorescence correlation spectroscopy (FCS), we determined that >1300 Cas9 RNPs per nucleus are typically required for productive genome editing. EDV-mediated editing was >30-fold more efficient than electroporation, and editing occurs at least two-fold faster for EDV delivery at comparable total Cas9 RNP doses. We hypothesize that differences in efficacy between these methods result in part from the increased duration of RNP nuclear residence resulting from EDV delivery. Our results directly compare RNP delivery strategies, showing that packaged delivery could dramatically reduce the amount of CRISPR-Cas9 RNPs required for experimental or clinical genome editing.
Packaged delivery of CRISPR-Cas9 ribonucleoproteins accelerates genome editing.
将 CRISPR-Cas9 核糖核蛋白进行包装递送可加速基因组编辑
阅读:9
作者:Karp Hannah, Zoltek Madeline, Wasko Kevin, Vazquez Angel Luis, Brim Jinna, Ngo Wayne, Schepartz Alanna, Doudna Jennifer
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2024 | 起止号: | 2024 Oct 19 |
| doi: | 10.1101/2024.10.18.619117 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
