Lung manifestations of chronic obstructive pulmonary disease (COPD) are often exacerbated by influenza A virus infections; however, the underlying mechanisms remain largely unknown, and hence therapeutic options are limited. Using a physiologically relevant human lung airway-on-a-chip (Airway Chip) microfluidic culture model lined with human airway epithelium from COPD or healthy donors interfaced with pulmonary microvascular endothelium, we observed that Airway Chips lined with COPD epithelium exhibit an increased sensitivity to influenza virus infection, as is observed clinically in COPD patients. Differentiated COPD airway epithelial cells display increased inflammatory cytokine production, barrier function loss, and mucus accumulation upon virus infection. Transcriptomic analysis revealed gene expression profiles characterized by upregulation of serine proteases that may facilitate viral entry and downregulation of interferon-related genes associated with antiviral immune responses. Importantly, treatment of influenza virus-infected COPD epithelium with a protease inhibitor, nafamostat, ameliorated the disease phenotype, as evidenced by dampened viral replication, reduced mucus accumulation, and improved tissue barrier integrity. These findings suggest that targeting host serine proteases may represent a promising therapeutic avenue against influenza-afflicted COPD exacerbations.
Host Serine Proteases and Antiviral Innate Immunity as Potential Therapeutic Targets in Influenza A Virus Infection-Induced COPD Exacerbations.
宿主丝氨酸蛋白酶和抗病毒先天免疫作为甲型流感病毒感染诱发的 COPD 急性加重的潜在治疗靶点
阅读:10
作者:Bai Haiqing, Rodas Melissa, Si Longlong, Man Yuncheng, Ji Jie, Plebani Roberto, Mercer Johnathan D, Powers Rani K, Belgur Chaitra, Jiang Amanda, Hall Sean R R, Prantil-Baun Rachelle, Ingber Donald E
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Mar 12; 26(6):2549 |
| doi: | 10.3390/ijms26062549 | 种属: | Viral |
| 研究方向: | 其它 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
