Proximity-dependent biotinylation coupled with mass spectrometry enables the characterization of subcellular proteomes. This technique has significantly advanced neuroscience by revealing sub-synaptic protein networks, such as the synaptic cleft and post-synaptic density. Profiling proteins at this detailed level is essential for understanding the molecular mechanisms of neuronal connectivity and transmission. Despite its recent successful application to various neuronal types, proximity labelling has yet to be employed to study the serotonin system. In this study, we uncovered an unreported inhibitory mechanism of serotonin on horseradish peroxidase (HRP)-based biotinylation. Our result showed that serotonin significantly reduces biotinylation levels across various Biotin-XX-tyramide (BxxP) concentrations in HEK293T cells and primary neurons, whereas dopamine exerts minimal interference, highlighting the specificity of this inhibition. To counteract this inhibition, we demonstrated that Dz-PEG, an aryl diazonium compound that consumes serotonin through an azo-coupling reaction, restores biotinylation efficiency. Label-free quantitative proteomics confirmed that serotonin inhibits biotinylation, and that Dz-PEG effectively reverses this inhibition. These findings highlight the importance of accounting for neurotransmitter interference in proximity-dependent biotinylation studies, especially for cell-type specific profiling in neuroscience. Additionally, we provided a potential strategy to mitigate these challenges, thereby enhancing the accuracy and reliability of such studies.
Revealing and mitigating the inhibitory effect of serotonin on HRP-mediated protein labelling.
揭示并减轻血清素对HRP介导的蛋白质标记的抑制作用
阅读:15
作者:Chan Zora Chui-Kuen, Qi Cheng, Cai Yuanhong, Li Xin, Ren Jing
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2024 | 起止号: | 2024 Dec 30; 14(1):32126 |
| doi: | 10.1038/s41598-024-83928-w | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
