Glioblastoma (GB) cells actively interact with the central nervous system (CNS) tumor microenvironment (TME). These interactions, particularly with neurons, require a better understanding. 3D tumor models replicating the human TME are needed to unravel pathological processes and to test novel treatments for efficacy and safety. We developed a novel 3D human coculture model for studying neuron-GB interactions. The model revealed both structural and functional interactions between cell types. Paracrine communication in the coculture model favored a tumor-supportive environment. Notably, cell-specific calcium signaling characteristics differed in cocultures compared to monocultures, highlighting the impact of interactions on cellular functionality in TME. The safety of a clinically used treatment, temozolomide, was tested in the 3D coculture model, and it selectively inhibited GB invasion while preserving neurons' morphology and functionality. The established model provides a tool for dissecting the interactions within the TME and testing the efficacy and safety of novel treatments.
Functional 3D Human Neuron-Glioblastoma Model Reveals Cellular Interactions Enabling Drug Safety Assessments.
阅读:2
作者:Förster Nanna, Isosaari Lotta, Kulta Oskari, Junnila Oona, Vuolanto Valtteri, Pollari Marjukka, Rautajoki Kirsi J, Narkilahti Susanna
期刊: | FASEB Journal | 影响因子: | 4.200 |
时间: | 2025 | 起止号: | 2025 Apr 30; 39(8):e70567 |
doi: | 10.1096/fj.202500291RR |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。