Functional 3D Human Neuron-Glioblastoma Model Reveals Cellular Interactions Enabling Drug Safety Assessments.

功能性 3D 人类神经元-胶质母细胞瘤模型揭示细胞相互作用,从而实现药物安全性评估

阅读:12
作者:Förster Nanna, Isosaari Lotta, Kulta Oskari, Junnila Oona, Vuolanto Valtteri, Pollari Marjukka, Rautajoki Kirsi J, Narkilahti Susanna
Glioblastoma (GB) cells actively interact with the central nervous system (CNS) tumor microenvironment (TME). These interactions, particularly with neurons, require a better understanding. 3D tumor models replicating the human TME are needed to unravel pathological processes and to test novel treatments for efficacy and safety. We developed a novel 3D human coculture model for studying neuron-GB interactions. The model revealed both structural and functional interactions between cell types. Paracrine communication in the coculture model favored a tumor-supportive environment. Notably, cell-specific calcium signaling characteristics differed in cocultures compared to monocultures, highlighting the impact of interactions on cellular functionality in TME. The safety of a clinically used treatment, temozolomide, was tested in the 3D coculture model, and it selectively inhibited GB invasion while preserving neurons' morphology and functionality. The established model provides a tool for dissecting the interactions within the TME and testing the efficacy and safety of novel treatments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。