Intact microdissection of stellate ganglia in a Parkinson's disease model reveals aggregation of mutant human α-synuclein in their cell bodies.

在帕金森病模型中,对星状神经节进行完整显微解剖,发现突变的人类α-突触核蛋白在其细胞体中聚集

阅读:17
作者:Lee Bonn, Ahmad Shiraz, Edling Charlotte E, LeBeau Fiona E N, Jeevaratnam Kamalan
Cardiac dysautonomia plays an important role in understanding Parkinson's disease (PD), with recent studies highlighting the presence of α-synuclein in cardiac tissue. We hypothesise that sympathetic dysregulation observed in PD may involve pathological changes caused by α-synuclein in stellate ganglia (SG). This study aimed to investigate α-synucleinopathy in SG of the genetic PD murine animal model. Mice overexpressing Ala30Pro (A30P) mutant α-synuclein were used. We here demonstrate a technique for meticulously dissecting SG. The collected SG from the transgenic mice were immunolabelled with neuronal markers, A30P human mutant α-synuclein and anti-α-synuclein aggregates. A30P mutant α-synuclein protein was expressed in the sympathetic neuronal (tyrosine hydroxylase (TH)-positive) cell bodies. Approximately 27% of the TH-positive cell bodies expressed the A30P mutant α-synuclein protein. The mutant protein was densely localised at the cardiopulmonary pole of the SG. Additionally, we observed that the A30P mutant protein formed fibril aggregation in the SG. Our findings suggest that α-synucleinopathy in the PD animal model can affect the sympathetic autonomic nervous system, providing insight for further research into targeting α-synuclein pathology in the SG as a potential link between cardiac dysautonomia and PD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。