Cleavage of the TrkB-FL receptor during epileptogenesis: insights from a kainic acid-induced model of epilepsy and human samples.

癫痫发生过程中 TrkB-FL 受体的裂解:来自红藻氨酸诱导癫痫模型和人类样本的启示

阅读:9
作者:Ribeiro-Rodrigues Leonor, Fonseca-Gomes João, Paulo Sara L, Viais Ricardo, Ribeiro Filipa F, Miranda-Lourenço Catarina, Mouro Francisco M, Belo Rita F, Ferreira Catarina B, Tanqueiro Sara R, Ferreira-Manso Mafalda, Umemori Juzoh, Castrén Eero, Paiva Vítor H, Sebastião Ana M, Aronica Eleonora, Campos Alexandre Rainha, Bentes Carla, Xapelli Sara, Diógenes Maria José
Brain-derived neurotrophic factor (BDNF) is essential for neuronal survival, differentiation, and plasticity. In epilepsy, BDNF exhibits a dual role, exerting both antiepileptic and pro-epileptic effects. The cleavage of its main receptor, full-length tropomyosin-related kinase B (TrkB-FL), was suggested to occur in status epilepticus (SE) in vitro. Moreover, under excitotoxic conditions, TrkB-FL was found to be cleaved, resulting in the formation of a new intracellular fragment, TrkB-ICD. Thus, we hypothesized that TrkB-FL cleavage and TrkB-ICD formation could represent an uncovered mechanism in epilepsy. We used a rat model of mesial temporal lobe epilepsy (mTLE) induced by kainic acid (KA) to investigate TrkB-FL cleavage and TrkB-ICD formation during SE (∼3 h after KA) and established epilepsy (EE) (4-5 weeks after KA). Animals treated with 10 mg/kg of KA exhibited TrkB-FL cleavage during SE, with hippocampal levels of TrkB-FL and TrkB-ICD correlating with seizure severity. Notably, TrkB-FL cleavage and TrkB-ICD formation were also detected in animals with EE, which exhibited spontaneous recurrent convulsive seizures, neuronal death, mossy fiber sprouting, and long-term memory impairment. Importantly, hippocampal samples from patients with refractory epilepsy also showed TrkB-FL cleavage with increased TrkB-ICD levels. Additionally, lentiviral-mediated overexpression of TrkB-ICD in the hippocampus of healthy mice and rats resulted in long-term memory impairment. Our findings suggest that TrkB-FL cleavage and the subsequent TrkB-ICD production occur throughout epileptogenesis, with the extent of cleavage correlating positively with seizure occurrence. Moreover, we found that TrkB-ICD overexpression impairs memory. This work uncovers a novel mechanism in epileptogenesis that could serve as a potential therapeutic target in mTLE, with implications for preserving cognitive function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。