Vinculin (VCL) is a key adapter protein located in force-bearing costamere complexes, which mechanically couples the sarcomere to the ECM. Heterozygous vinculin frameshift genetic variants can contribute to cardiomyopathy when external stress is applied, but the mechanosensitive pathways underpinning VCL haploinsufficiency remain elusive. Here, we show that in response to extracellular matrix stiffening, heterozygous loss of VCL disrupts force-mediated costamere protein recruitment, thereby impairing cardiomyocyte contractility and sarcomere organization. Analyses of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) harboring either VCL c.659dupA or VCL c.74del7 heterozygous VCL frameshift variants revealed that these VCL mutant hPSC-CMs exhibited heightened contractile strain energy, morphological maladaptation, and sarcomere disarray on stiffened matrix. Mechanosensitive recruitment of costameric talin 2, paxillin, focal adhesion kinase, and α-actinin was significantly reduced in vinculin variant cardiomyocytes. Despite poorly formed costamere complexes and sarcomeres, elevated expression of integrin β1 and cortical actin on stiff substrates may rescue force transmission on stiff substrates, an effect that is recapitulated in WT CMs by ligating integrin receptors and blocking mechanosensation. Together, these data support that heterozygous loss of VCL contributes to adverse cardiomyocyte remodeling by impairing adhesion-mediated force transmission from the costamere to the cytoskeleton. (191 words).
Vinculin haploinsufficiency impairs integrin-mediated costamere remodeling on stiffer microenvironments.
黏着斑蛋白单倍体不足会损害整合素介导的肌节在较硬的微环境中的重塑
阅读:17
作者:Nelson Aileena C, Molley Thomas G, Gonzalez Gisselle, Kirkland Natalie J, Holman Alyssa R, Masutani Evan M, Chi Neil C, Engler Adam J
| 期刊: | Journal of Molecular and Cellular Cardiology | 影响因子: | 4.700 |
| 时间: | 2025 | 起止号: | 2025 Mar;200:1-10 |
| doi: | 10.1016/j.yjmcc.2025.01.001 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
