Protein kinase A is a dependent factor and therapeutic target in mouse models of fibrous dysplasia.

阅读:4
作者:Liu Zhongyu, Xing Lu, Huang Wenlong, Ji Ning, Zhao Hang, Chen Qianming, Han Xianglong, Bai Ding, Zhao Xuefeng
Fibrous dysplasia is a skeletal disorder caused by activating mutations in Gα(s), leading to bone fractures, deformities, and pain. Protein kinase A (PKA), the principal effector of Gα(s), plays critical roles in various biological processes. However, its role in fibrous dysplasia is unknown. Here we demonstrate that PKA activation replicates fibrous dysplasia-like lesions in a transgenic mouse model expressing an activating mutation of PKA in the skeletal stem cell lineage. Mechanistically, PKA promotes osteoclastogenesis and aberrant osteogenic differentiation and proliferation of skeletal stem cells, while impairing mineralization. Downregulating PKA activity, using either a genetically engineered PKA inhibitor peptide or small-molecule inhibitors, effectively alleviates fibrous dysplasia lesions in a fibrous dysplasia mouse model and safeguards bone structure by increasing trabecular bone volume in a PKA-inhibition mouse model. Although long-term pharmacological PKA inhibition remains untested, these findings demonstrate that PKA is a dependent factor in fibrous dysplasia initiation and progression, underscoring its potential as a therapeutic target.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。