BACKGROUND: Although hepatic ischemia-reperfusion injury (IRI) frequently occurs during liver resection and transplantation, the underlying mechanisms remain incompletely understood. Through high-throughput sequencing, we found that v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (MAFF) expression was significantly increased after hepatic IRI. The specific role of MAFF, a basic leucine zipper (bZIP) transcription factor, in hepatic IRI is unknown. In the present study, we aimed to explore the effect of MAFF on hepatic IRI injury. APPROACH AND RESULTS: Adenovirus vectors carrying the MAFF gene were administered to mice to explore the potential significance of MAFF. After ischemia-reperfusion, MAFF expression was significantly upregulated, suggesting a potential association between MAFF expression and hepatocyte apoptosis. A reduction in MAFF expression was demonstrated to worsen hepatic impairment and enhance the expression of proinflammatory cytokines in mice following ischemia-reperfusion. Conversely, MAFF overexpression had the opposite effect. Mechanistically, the combination of CUT&Tag and RNA sequencing technologies identified cardiotrophic factor-like cytokine 1 (CLCF1) as a direct transcriptional target for MAFF and BTB and CNC homology 1 (BACH1) heterodimers. This interaction subsequently triggers signal transducer and activator of transcription 3 (STAT3) signaling. CONCLUSIONS: MAFF alleviates hepatic ischemia-reperfusion injury by reducing hepatocyte apoptosis and the inflammatory response through the activation of the CLCF1/STAT3 signaling pathway, offering valuable insights into the impact of MAFF on liver protection and potential therapeutic targets for liver treatment.
MAFF alleviates hepatic ischemia-reperfusion injury by regulating the CLCF1/STAT3 signaling pathway.
MAFF通过调节CLCF1/STAT3信号通路减轻肝脏缺血再灌注损伤
阅读:10
作者:Lei Dengliang, Wang Yihua, Li Shanshan, Xiang Song, Luo Yunhai, Yan Ping, Luo Fang, Huang Zuotian, Wu ZhongJun
| 期刊: | Cellular & Molecular Biology Letters | 影响因子: | 10.200 |
| 时间: | 2025 | 起止号: | 2025 Apr 1; 30(1):39 |
| doi: | 10.1186/s11658-025-00721-x | 研究方向: | 信号转导 |
| 疾病类型: | 肝损伤 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
