Impact of Hedgehog modulators on signaling pathways in primary murine and human hepatocytes in vitro: insights into liver metabolism.

Hedgehog 调节剂对体外培养的小鼠和人类原代肝细胞信号通路的影响:对肝脏代谢的深入了解

阅读:16
作者:Ott Fritzi, Körner Christiane, Krohn Knut, Fischer Janett, Damm Georg, Seehofer Daniel, Berg Thomas, Matz-Soja Madlen
The Hedgehog (Hh) signaling pathway is essential for maintaining homeostasis during embryogenesis and in adult tissues. In the liver, dysregulation of this pathway often leads to liver cancer development. Recent studies also suggest that disturbances in the Hh pathway can affect liver metabolism in healthy livers through interactions with other signaling pathways, such as the Wnt/β-catenin pathway. As a result, the Hh pathway has emerged as a promising target for therapeutic intervention. However, little is known about the effects of Hh modulators on healthy hepatocytes. In our study, we investigated the effects of the Hh agonists SAG (300 nM) and triamcinolone acetonide (40 µM), as well as the antagonists RU-SKI 43 (100 nM), cyclopamine (5 µM), budesonide (25 µM), GANT61 (0.5 µM), and vismodegib (1 µM) on healthy mouse and human primary hepatocytes in vitro. We employed toxicological, transcriptomic, proteomic, and functional assays, including proliferation and Seahorse assays. Our results show that these compounds significantly impact metabolic pathways such as lipid and glucose metabolism at both transcriptional and protein levels. Mechanistically, our data suggest the involvement of both canonical and non-canonical Hedgehog pathways, a phenomenon not previously described in hepatocytes. These findings highlight the diverse effects of these compounds on signaling and key metabolic functions in the liver, which emphasizes the need to investigate the hepatic Hh cascade and its metabolic control in depth. As the compounds regulate different aspects of metabolism, they need to be carefully studied in appropriate model systems for specific therapeutic use.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。