DNA origami vaccines program antigen-focused germinal centers.

阅读:3
作者:Romanov Anna, Knappe Grant A, Ronsard Larance, Suh Heikyung, Omer Marjan, Chapman Asheley P, Lewis Vanessa R, Spivakovsky Katie, Canales Josue, Reizis Boris, Tingle Ryan D, Cottrell Christopher A, Schiffner Torben, Lingwood Daniel, Bathe Mark, Irvine Darrell J
Recruitment and expansion of rare precursor B cells in germinal centers (GCs) is a central goal of vaccination to generate broadly neutralizing antibodies (bnAbs) against challenging pathogens such as HIV. Multivalent immunogen display is a well-established method to enhance vaccine-induced B cell responses, typically accomplished by using natural or engineered protein scaffolds. However, these scaffolds themselves are targets of antibody responses, with the potential to generate competitor scaffold-specific B cells that could theoretically limit expansion and maturation of "on-target" B cells in the GC response. Here, we rationally designed T-independent, DNA-origami based virus-like particles (VLPs) with optimal antigenic display of the germline targeting HIV Env immunogen, eOD-GT8, and appropriate T cell help to achieve a potent GC response. In preclinical mouse models, these DNA-VLPs expanded significantly higher frequencies of epitope-specific GC B cells compared with a state-of-the-art clinical protein nanoparticle. Optimized DNA-VLPs primed germinal centers focused on the target antigen and rapidly expanded subdominant broadly neutralizing antibody precursor B cells for HIV with a single immunization. Thus, avoiding scaffold-specific responses augments priming of bnAb precursor B cells, and DNA-VLPs are a promising platform for promoting B cell responses towards challenging subdominant epitopes.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。