Aortic aneurysms are potentially fatal focal enlargements of the aortic lumen; the disease burden is increasing as the human population ages. Pathological oxidative stress is implicated in the development of aortic aneurysms. We pursued a chemogenetic approach to create an animal model of aortic aneurysm formation using a transgenic mouse line, DAAO-TGTie2, that expresses yeast d-amino acid oxidase (DAAO) under control of the endothelial Tie2 promoter. In DAAO-TGTie2 mice, DAAO generated the ROS hydrogen peroxide (H2O2) in endothelial cells only when provided with d-amino acids. When DAAO-TGTie2 mice were chronically fed d-alanine, the animals became hypertensive and developed abdominal, but not thoracic, aortic aneurysms. Generation of H2O2 in the endothelium led to oxidative stress throughout the vascular wall. Proteomics analyses indicated that the oxidant-modulated protein kinase JNK1 was dephosphorylated by the phosphoprotein phosphatase DUSP3 (dual specificity phosphatase 3) in abdominal, but not thoracic, aorta, causing activation of Kruppel-like Factor 4 (KLF4)-dependent transcriptional pathways that triggered phenotypic switching and aneurysm formation. Pharmacological DUSP3 inhibition completely blocked the aneurysm formation caused by chemogenetic oxidative stress. These studies establish that regional differences in oxidant-modulated signaling pathways lead to differential disease progression in discrete vascular beds and identify DUSP3 as a potential pharmacological target for the treatment of aortic aneurysms.
Differential aortic aneurysm formation provoked by chemogenetic oxidative stress.
化学遗传氧化应激诱发的差异性主动脉瘤形成
阅读:9
作者:Das Apabrita Ayan, Waldeck-Weiermair Markus, Yadav Shambhu, Spyropoulos Fotios, Pandey Arvind, Dutta Tanoy, Covington Taylor A, Michel Thomas
| 期刊: | Journal of Clinical Investigation | 影响因子: | 13.600 |
| 时间: | 2025 | 起止号: | 2025 Mar 18; 135(9):e188743 |
| doi: | 10.1172/JCI188743 | 研究方向: | 肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
