Transcriptional dynamics uncover the role of BNIP3 in mitophagy during muscle remodeling in Drosophila

转录动力学揭示了 BNIP3 在果蝇肌肉重塑过程中线粒体自噬中的作用

阅读:2
作者:Hiroki Taoka # ,Tadayoshi Murakawa # ,Kohei Kawaguchi ,Michiko Koizumi ,Tatsuya Kaminishi ,Yuriko Sakamaki ,Kaori Tanaka ,Akihito Harada ,Keiichi Inoue ,Tomotake Kanki ,Yasuyuki Ohkawa ,Naonobu Fujita
Differentiated muscle cells contain myofibrils and well-organized organelles, enabling powerful contractions. Muscle cell reorganization occurs in response to various physiological stimuli; however, the mechanisms behind this remodeling remain enigmatic due to the lack of a genetically trackable system. Previously, we reported that a subset of larval muscle cells is remodeled into adult abdominal muscle through an autophagy-dependent mechanism in Drosophila. To unveil the underlying mechanisms of this remodeling, we performed a comparative time-course RNA-seq analysis of isolated muscle cells with or without autophagy. It revealed both transcriptional dynamics independent of autophagy and highlighted the significance of BNIP3-mediated mitophagy in muscle remodeling. Mechanistically, we found that BNIP3 recruits autophagic machinery to mitochondria through its LC3-interacting motif and minimal essential region, which interact with Atg8a and Atg18a, respectively. Loss of BNIP3 leads to a substantial accumulation of larval mitochondria, ultimately impairing muscle remodeling. In summary, this study demonstrates that BNIP3-dependent mitophagy is critical for orchestrating the dynamic process of muscle remodeling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。