Structural basis for anomalous cellular trafficking behavior of glaucoma-associated A427T mutant myocilin.

青光眼相关 A427T 突变肌纤蛋白异常细胞运输行为的结构基础

阅读:7
作者:Hill Kamisha R, Scelsi Hailee F, Youngblood Hannah A, Faralli Jennifer A, Itakura Tatsuo, Fini M Elizabeth, Peters Donna M, Lieberman Raquel L
Familial mutations in myocilin cause vision loss in glaucoma due to misfolding and a toxic gain of function in a senescent cell type in the anterior eye. Here we characterize the cellular behavior and structure of the myocilin (myocilin (A427T)) mutant, of uncertain pathogenicity. Our characterization of A427T demonstrates that even mutations that minimally perturb myocilin structure and stability can present challenges for protein quality control clearance pathways. Namely, when expressed in an inducible immortalized trabecular meshwork cell line, inhibition of the proteasome reroutes wild-type myocilin, but not myocilin (A427T), from endoplasmic reticulum associated degradation to lysosomal degradation. Yet, the crystal structure of the A427T myocilin olfactomedin domain shows modest perturbations largely confined to the mutation site. The previously unappreciated range of mutant myocilin behavior correlating with variable stability and structure provides a rationale for why it is challenging to predict causal pathogenicity of a given myocilin mutation, even in the presence of clinical data for members of an affected family. Comprehending the continuum of mutant myocilin behavior in the laboratory supports emerging efforts to use genetics to assess glaucoma risk in the clinic. In addition, the study supports a therapeutic strategy aimed at enhancing autophagic clearance of mutant myocilin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。