Sulfur mustard gas (SM), an alkylating and vesicating agent, has been used frequently in many wars and conflicts. SM exposure to the eye results in several corneal abnormalities including scar/fibrosis formation. However, molecular mechanism for SM induced corneal fibrosis development is poorly understood. After SM insult to the eye, excessive synthesis/secretion of extracellular matrix components (ECM) including collagen (COL) I, COL III, and lysyl oxidase (LOX) by corneal myofibroblasts causes corneal fibrosis, however, precise mechanism remains elusive. This study tested the hypothesis that Phosphoinositide 3-kinase (PI3K) signaling alterations post SM in cornea enhances stromal ECM synthesis and corneal fibrosis. New Zealand White Rabbits were used. The right eyes were exposed to SM (200Â mg-min/m(3)) and left eye to the air for 8min at MRI Global. Rabbit corneas were collected on day-3, day-7, and day-14 for molecular analysis. SM exposure caused a significant increase in mRNA expression of PI3K, AKT, COL I, COL III, and LOX and protein levels of LOX in a time-dependent manner in rabbit corneas. The in vitro studies were performed with human corneal stromal fibroblasts (hCSFs) by growing cultures in -/+ nitrogen mustard (NM) and LY294002, a PI3K specific inhibitor, for 30min, 8h, 24h, 48h, and 72h. NM significantly increased mRNA and protein levels of PI3K, AKT, COL I, COL III, and LOX. On the contrary, LY294002 in NM hCSFs significantly reduced PI3K, AKT, COL I, COL III, and LOX protein expression. We concluded that PI3K signaling mediates stromal collagen synthesis and LOX production following SM injury.
PI3K signaling and lysyl oxidase is critical to corneal stroma fibrosis following mustard gas injury.
PI3K 信号传导和赖氨酰氧化酶对芥子气损伤后角膜基质纤维化至关重要
阅读:18
作者:Sinha Nishant R, Hofmann Alexandria C, Suleiman Laila A, Laub Riley, Tripathi Ratnakar, Chaurasia Shyam S, Mohan Rajiv R
| 期刊: | Experimental Eye Research | 影响因子: | 2.700 |
| 时间: | 2025 | 起止号: | 2025 Feb;251:110213 |
| doi: | 10.1016/j.exer.2024.110213 | 研究方向: | 信号转导 |
| 信号通路: | PI3K/Akt | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
