Partner switching mechanisms (PSMs) are signal transduction systems comprised of a sensor phosphatase (RsbU), an anti-sigma factor (RsbW, kinase), an anti-anti-sigma factor (RsbV, the RsbW substrate), and a target sigma factor. Chlamydia spp. are obligate intracellular bacterial pathogens of animals that undergo a developmental cycle transitioning between the infectious elementary body (EB) and replicative reticulate body (RB) within a host cell-derived vacuole (inclusion). Secondary differentiation events (RB to EB) are transcriptionally regulated, in part, by the housekeeping sigma factor (Ï(66)) and two late-gene sigma factors (Ï(54) and Ï(28)). Prior research supports that the PSM in Chlamydia trachomatis regulates availability of Ï(66). Pan-genome analysis revealed that PSM components are conserved across the phylum Chlamydiota, with Chlamydia spp. possessing an atypical arrangement of two anti-anti-sigma factors, RsbV1 and RsbV2. Bioinformatic analyses support RsbV2 as the homolog to the pan-genome-conserved RsbV with RsbV1 as an outlier. This, combined with in vitro data, indicates that RsbV1 and RsbV2 are structurally and biochemically distinct. Reduced levels or overexpression of RsbV1/RsbV2 did not significantly impact C. trachomatis growth or development. In contrast, overexpression of a non-phosphorylatable RsbV2 S55A mutant, but not overexpression of an RsbV1 S56A mutant, resulted in a 3 log reduction in infectious EB production without reduction in genomic DNA (total bacteria) or inclusion size, suggesting a block in secondary differentiation. The block was corroborated by reduced production of Ï(54/28)-regulated late proteins and via transmission electron microscopy.IMPORTANCEChlamydia trachomatis is the leading cause of reportable bacterial sexually transmitted infections (STIs) and causes the eye infection trachoma, a neglected tropical disease. Broad-spectrum antibiotics used for treatment can lead to microbiome dysbiosis and increased antibiotic resistance development in other bacteria, and treatment failure for chlamydial STIs is a recognized clinical problem. Here, we show that disruption of a partner switching mechanism (PSM) significantly reduces infectious progeny production via blockage of reticulate body to elementary body differentiation. We also reveal a novel PSM expansion largely restricted to the species infecting animals, suggesting a role in pathogen evolution. Collectively, our results highlight the chlamydial PSM as a key regulator of development that could be a potential target for novel therapeutics.
Distinct impacts of each anti-anti-sigma factor ortholog of the chlamydial Rsb partner switching mechanism on development in Chlamydia trachomatis.
沙眼衣原体 Rsb 伴侣转换机制的每个抗抗 sigma 因子直系同源物对沙眼衣原体发育的不同影响
阅读:9
作者:Junker Shiomi, Singh Vandana, Al-Saadi Aamal G M, Wood Nicholas A, Hamilton-Brehm Scott D, Ouellette Scot P, Fisher Derek J
| 期刊: | Microbiology Spectrum | 影响因子: | 3.800 |
| 时间: | 2024 | 起止号: | 2024 Oct 29; 12(12):e0184624 |
| doi: | 10.1128/spectrum.01846-24 | 靶点: | IGM |
| 研究方向: | 发育与干细胞 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
