Major developmental events occurring in the hippocampus during the third trimester of human gestation and neonatally in altricial rodents include rapid and synchronized dendritic arborization and astrocyte proliferation and maturation. We tested the hypothesis that signals sent by developing astrocytes to developing neurons modulate dendritic development in vivo. First, we altered neuronal development by exposing neonatal (third trimester-equivalent) mice to ethanol, which increased dendritic arborization in hippocampal pyramidal neurons. We next assessed concurrent changes in the mouse astrocyte translatome by translating ribosomal affinity purification (TRAP)-seq. We followed up on ethanol-inhibition of astrocyte Chpf2 and Chsy1 gene translation because these genes encode biosynthetic enzymes of chondroitin sulfate glycosaminoglycan (CS-GAG) chains (extracellular matrix components that inhibit neuronal development and plasticity) and have not been explored before for their roles in dendritic arborization. We report that Chpf2 and Chsy1 are enriched in astrocytes, and their translation is inhibited by ethanol, which also reduces the levels of CS-GAGs measured by Liquid Chromatography/Mass Spectrometry. Finally, astrocyte-conditioned medium derived from Chfp2-silenced astrocytes increased neurite length and branching of hippocampal neurons in vitro, mechanistically linking changes in CS-GAG biosynthetic enzymes in astrocytes to altered neuronal development. These results demonstrate that CS-GAG biosynthetic enzymes in astrocytes regulate dendritic arborization in developing neurons and are involved in ethanol-induced altered neuronal development.
Astrocyte Extracellular Matrix Modulates Neuronal Dendritic Development.
星形胶质细胞外基质调节神经元树突发育
阅读:13
作者:Hashimoto Joel G, Margolies Nicholas, Zhang Xiaolu, Karpf Joshua, Song Yuefan, Gorham Natalie, Davis Brett A, Zhang Fuming, Linhardt Robert J, Carbone Lucia, Guizzetti Marina
| 期刊: | Glia | 影响因子: | 5.100 |
| 时间: | 2025 | 起止号: | 2025 Aug;73(8):1589-1607 |
| doi: | 10.1002/glia.70020 | 研究方向: | 发育与干细胞、神经科学、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
