The nitrofen/bisdiamine murine model of congenital diaphragmatic hernia has a pulmonary hypertension vascular phenotype consistent with human CDH.

硝苯/双胺小鼠先天性膈疝模型具有与人类 CDH 一致的肺动脉高压血管表型

阅读:6
作者:Gonyea Cailin R, Shen Yuanjun, Nelson Katherine M, Bird Rylie N, Gilbert Rachel M, Olutoye Oluyinka O 2nd, Keswani Sundeep G, Gleghorn Jason P
Congenital diaphragmatic hernia (CDH)-associated pulmonary hypertension (CDH-PH) has severe implications for the survival of patients with CDH; however, CDH-PH is often refractory to pulmonary vasodilators, rendering it difficult to treat. As such, models are necessary to study the etiology, mechanism, onset, and progression of pulmonary vascular remodeling in CDH. Despite several established murine models of CDH, no characterized CDH-PH or CDH-associated pulmonary vascular remodeling murine model exists. In this work, we assessed the nitrofen/bisdiamine (N/B) murine CDH model for pulmonary hypertension (PH) hallmarks to establish its usefulness as a model for studying mechanisms leading to CDH-PH. To do so, we evaluated key metrics of vascular PH at two different gestational time points and compared the results to sex- and age-matched human CDH tissue sections and results from a meta-analysis of published data of human CDH samples. We found that vessel rarefaction, smooth muscle hypertrophy, and adventitial extracellular matrix deposition were present in the N/B CDH murine model at E18.5 in late gestation. In addition, this same vascular PH phenotype was present much earlier in development at E16.5, after normal diaphragmatic development and closure, but still within the pseudoglandular phase of lung development. Finally, comparisons with human CDH data confirm that the N/B CDH murine model recapitulates the pulmonary hypertension vascular phenotype seen in human CDH lung sections. Together, these data validate a mouse CDH-PH model with the ability to genetically perturb pathways that may exacerbate or improve CDH-PH outcomes, which could, in turn, lead to therapies or diagnostic markers of CDH-PH severity in utero.NEW & NOTEWORTHY Pulmonary hypertension (PH) is a severe complication of congenital diaphragmatic hernia (CDH), yet mechanisms and potential interventions remain poorly understood, partly due to the lack of animal models. This study validated that the nitrofen/bisdiamine (N/B) CDH mouse model recapitulates a PH vascular phenotype, including vessel rarefaction, smooth muscle hypertrophy, and remodeling that is benchmarked to human CDH tissues. These findings suggest that this model is a robust in vivo tool for the mechanistic study of CDH-PH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。