Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and hospitalisation of infants in developed countries. Surfactant protein A (SP-A) is an important innate immune molecule, localized in pulmonary surfactant. SP-A binds to carbohydrates on the surface of pathogens in a calcium-dependent manner to enable neutralisation, agglutination and clearance of pathogens including RSV. SP-A forms trimeric units and further oligomerises through interactions between its N-terminal domains. Whilst a recombinant trimeric fragment of the closely related molecule (surfactant protein D) has been shown to retain many of the native protein's functions, the importance of the SP-A oligomeric structure in its interaction with RSV has not been determined. The aim of this study was to produce a functional trimeric recombinant fragment of human (rfh)SP-A, which lacks the N-terminal domain (and the capacity to oligomerise) and test its ability to neutralise RSV in an in vitro model of human bronchial epithelial infection. We used a novel expression tag derived from spider silk proteins ('NT') to produce rfhSP-A in Escherichia coli, which we found to be trimeric and to bind to mannan in a calcium-dependent manner. Trimeric rfhSP-A reduced infection levels of human bronchial epithelial (AALEB) cells by RSV by up to a mean (±SD) of 96.4 (±1.9) % at 5μg/ml, which was significantly more effective than dimeric rfhSP-A (34.3 (±20.5) %) (p<0.0001). Comparatively, native human SP-A reduced RSV infection by up to 38.5 (±28.4) %. For the first time we report the development of a functional trimeric rfhSP-A molecule which is highly efficacious in neutralising RSV, despite lacking the N-terminal domain and capacity to oligomerise.
Novel expression of a functional trimeric fragment of human SP-A with efficacy in neutralisation of RSV.
阅读:3
作者:Watson Alastair, Kronqvist Nina, Spalluto C Mirella, Griffiths Mark, Staples Karl J, Wilkinson Tom, Holmskov Uffe, Sorensen Grith L, Rising Anna, Johansson Jan, Madsen Jens, Clark Howard
| 期刊: | Immunobiology | 影响因子: | 2.300 |
| 时间: | 2017 | 起止号: | 2017 Feb;222(2):111-118 |
| doi: | 10.1016/j.imbio.2016.10.015 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
