Therapeutic Potential of STE20-Type Kinase STK25 Inhibition for the Prevention and Treatment of Metabolically Induced Hepatocellular Carcinoma

STE20型激酶STK25抑制剂在预防和治疗代谢性肝细胞癌中的治疗潜力

阅读:1
作者:Ying Xia ,Mara Caputo ,Emma Andersson ,Bernice Asiedu ,Jingjing Zhang ,Wei Hou ,Manoj Amrutkar ,Emmelie Cansby ,Nadia Gul ,Anne Gemmink ,Caitlyn Myers ,Mariam Aghajan ,Sheri Booten ,Andrew J Hoy ,Anetta Härtlova ,Per Lindahl ,Anders Ståhlberg ,Gert Schaart ,Matthijs K C Hesselink ,Andreas Peter ,Sue Murray ,Margit Mahlapuu
BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is a rapidly growing malignancy with high mortality. Recently, metabolic dysfunction-associated steatohepatitis (MASH) has emerged as a major HCC catalyst; however, signals driving transition of MASH to HCC remain elusive and treatment options are limited. Herein, we investigated the role of STE20-type kinase STK25, a critical regulator of hepatocellular lipotoxic milieu and MASH susceptibility, in the initiation and progression of MASH-related HCC. METHODS: The clinical relevance of STK25 in HCC was assessed in publicly available datasets and by RT-qPCR and proximity ligation assay in a validation cohort. The functional significance of STK25 silencing in human hepatoma cells was evaluated in vitro and in a subcutaneous xenograft mouse model. The therapeutic potential of STK25 antagonism was examined in a mouse model of MASH-driven HCC, induced by a single diethylnitrosamine injection combined with a high-fat diet. RESULTS: Analysis of public databases and in-house cohorts revealed that STK25 expression in human liver biopsies positively correlated with HCC incidence and severity. The in vitro silencing of STK25 in human hepatoma cells suppressed proliferation, migration, and invasion with efficacy comparable to that achieved by anti-HCC drugs sorafenib or regorafenib. STK25 knockout in human hepatoma cells also blocked tumor formation and growth in a subcutaneous xenograft mouse model. Furthermore, pharmacologic inhibition of STK25 with antisense oligonucleotides-administered systemically or hepatocyte-specifically-efficiently mitigated the development and exacerbation of hepatocarcinogenesis in a mouse model of MASH-driven HCC. CONCLUSION: This study underscores STK25 antagonism as a promising therapeutic strategy for the prevention and treatment of HCC in the context of MASH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。