IGF-1 promotes trophectoderm cell proliferation of porcine embryos by activating the Wnt/β-catenin pathway.

IGF-1 通过激活 Wnt/β-catenin 通路促进猪胚胎滋养层细胞增殖

阅读:11
作者:Kim Min Ju, Kang Hyo-Gu, Jeon Se-Been, Yun Ji Hyeon, Choi Eun Young, Jeong Pil-Soo, Song Bong-Seok, Kim Sun-Uk, Cho Seong-Keun, Sim Bo-Woong
BACKGROUND: Insulin-like growth factor 1 (IGF-1) influences various aspects of embryogenesis, including embryonic development. This study investigated the effects of IGF-1 on early embryonic development in pig embryos, focusing on its interaction with the Wnt/β-catenin signaling pathway, a key regulator of cell adhesion and proliferation. METHODS: Porcine embryos were used for experiments with chemical treatments to study blastocyst development and underlying mechanism. Apoptosis, immunochemistry, gene expression, and protein quantification were performed, with statistical significance assessed. RESULTS: IGF-1 treatment during the early stages of embryonic development significantly enhanced developmental parameters, in particular blastocyst formation rates. Interestingly, IGF-1 increased trophectoderm (TE) cell proliferation. The TE is an essential component of the blastocyst, maintaining its structure. Successful development of pig embryos was dependent on the proper formation and function of the TE. IGF-1 upregulated the expression of functional proteins related to TE differentiation and tight junctions. Notably, these effects were more pronounced when IGF-1 treatment was performed during the last 3 days of embryonic development (days 3-6) compared to the first 3 days (days 0-3). In addition, we found that IGF-1 promoted activation of the Wnt/β-catenin signaling pathway, including increasing β-catenin levels and related gene expression. To confirm the interaction between IGF-1 signaling and the Wnt/β-catenin pathway in TE development, embryos were cultured with picropodophyllin, an IGF-1 receptor inhibitor. Picropodophyllin suppressed developmental parameters, β-catenin levels, TE cell differentiation, and tight junction formation. These effects were successfully rescued by IGF-1 and the Wnt/β-catenin signaling activator ChiR99021. CONCLUSION: Our findings provide new insights into the interaction between IGF-1 and the Wnt/β-catenin signaling pathway during embryogenesis and highlight the potential of IGF-1 to improve reproductive outcomes by enhancing TE formation and quality.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。