Spinal cord injury (SCI) is a severe neurological condition with limited regenerative capacity and no effective curative treatments. Interleukin-13 (IL-13), an immunomodulatory cytokine, has shown therapeutic potential by promoting alternative immune activation and improving recovery after SCI in mice. However, cell-based IL-13 delivery is hindered by poor graft survival and limited localisation at the injury site. Here, we developed an injectable hydrogel-based delivery system (HGIL13) composed of IL-13-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles embedded in a photocrosslinkable gelatin methacrylate (GelMA) matrix, enabling sustained and localised IL-13 release. HGIL13 achieved IL-13 release for up to six weeks and significantly reduced lipopolysaccharide (LPS)-induced inflammation in BV2 microglia in vitro. In a mouse contusion SCI model, HGIL13 enhanced functional recovery, reduced lesion volume, and decreased demyelinated area. Using the Hexb(tdTomato) mouse we show that HGIL13 modulated the neuroimmune response by decreasing resident microglia density, downregulating CD86 expression, and upregulating Arginase-1 in both microglia and infiltrating monocyte-derived macrophages. RT-qPCR and RNA-seq analyses confirmed sustained immunomodulation over 28 days and indicated early reduction of activated microglia at 7 days post-injury as a key therapeutic mechanism. This study presents a safe, effective, and translatable strategy for localised cytokine delivery, demonstrating strong potential for immunomodulation and improved functional recovery following SCI.
Localised delivery of interleukin-13 from a PLGA microparticle embedded GelMA hydrogel improves functional and histopathological recovery in a mouse contusion spinal cord injury model.
阅读:3
作者:Walsh Ciara M, Colbert Ruth, Reynolds James P, Dunne Emily, Aiyegbusi Emmanuelle D, O'Carroll Ross, Wychowaniec Jacek K, Masuda Takahiro, Knobeloch Klaus-Peter, Prinz Marco, Brougham Dermot F, Dooley Dearbhaile
期刊: | Bioactive Materials | 影响因子: | 20.300 |
时间: | 2025 | 起止号: | 2025 Aug 8; 53:855-874 |
doi: | 10.1016/j.bioactmat.2025.07.018 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。