Isowighteone attenuates vascular calcification by targeting HSP90AA1-mediated PI3K-Akt pathway and suppressing osteogenic gene expression

异维A酸通过靶向HSP90AA1介导的PI3K-Akt通路并抑制成骨基因表达来减轻血管钙化。

阅读:3
作者:Yuanxi Mo # ,An Jin # ,Wanzi Hong # ,Jiahui Peng ,Rui Yang ,Qiqi Song ,Yaoxin Liu ,Yuqi Cheng ,Wing-Tak Wong ,Qian Huang ,Lei Jiang ,Zhaoyan Xu ,Ning Tan
BACKGROUND: Isowighteone, an isoflavonoid compound derived from Ficus hispida L.f. (F. hispida, Moraceae), has demonstrated significant anti-inflammatory properties in prior studies. However, its anti-inflammatory role in vascular calcification is unclear. OBJECT: We investigated the efficacy of isowighteone in the treatment of vascular calcification, explored its potential mechanism, and determined whether isowighteone is a safe and effective treatment. METHODS: In this study, we isolated three natural compounds and evaluated their efficacy using in vitro calcification models through CCK-8 assays, Alizarin Red staining, and calcium quantification. The key targets of Isowighteone were identified via network pharmacology and molecular docking analyses. The anti-calcification effect of Isowighteone was further assessed in a mouse model of vascular calcification. Alizarin Red staining, calcium quantification, and immunofluorescence were employed to evaluate its therapeutic potential. Additionally, quantitative real-time PCR (qRT-PCR) and Western blot were used to examine the mRNA and protein expression levels of osteogenic markers. The impact of Isowighteone on the HSP90AA1/PI3K/Akt signaling pathway in vascular calcification was also investigated using Western blot analysis. RESULTS: Alizarin red staining and Calcium quantification experiments demonstrated that Isowighteone reduces aortic vascular calcification in mice and decreases calcification levels in Human aortic smooth muscle cells (HASMCs). Network pharmacology and molecular docking analysis reveals the HSP90AA1 protein as the specific target of isowighteone in HASMCs which PI3K-Akt is pivotal regulatory signaling pathway in this mechanism. Additionally, this study proved Isowighteone downregulated osteogenic gene expression in HASMCs, thereby inhibiting cellular calcification and preventing the process of VC by in vivo study, as evidenced by qRT-PCR and Western blot. CONCLUSION: Isowighteone demonstrates significant therapeutic potential by effectively downregulating the expression of osteogenic genes, alleviating vascular calcification, and suppressing the HSP90AA1/PI3K/Akt signaling pathway, thereby improving pathological conditions associated with vascular calcification. These above results not only elucidate isowighteone as a novel therapeutic agent against VC through selective suppression of osteogenic differentiation but also position this phytochemical as a clinically candidate for VC management.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。