Selective vulnerability of stellate cells to gut dysbiosis: neuroanatomical changes in the medial entorhinal cortex.

阅读:2
作者:Mydeen Ayishal B, Nakhal Mohammed M, Nafees Faheema, Almazrouei Reem, Alkamali Rasha, Alsulaimi Mahra, Aleissaee Omar, Alzaabi Abdulrahman, Alfahim Mohamed, Almansoori Hamad, BaniYas Shamsa, Al Houqani Shaikha, Elkashlan Marim, Shehab Safa, Hamad Mohammad I K
INTRODUCTION: The gut microbiota plays a critical role in regulating brain structure and function via the microbiota-gut-brain axis. Antibiotic-induced gut dysbiosis (AIGD) has been linked to neuroanatomical changes and cognitive deficits. However, its impact on neuronal morphology in layer II of the medial entorhinal cortex (mECII), a region central to spatial memory, remains poorly understood. This study examines how AIGD affects dendritic architecture in mECII stellate and pyramidal island cells. METHODS: Mice received a broad-spectrum oral antibiotic cocktail to induce AIGD. Gut microbiota composition was analyzed using 16S rRNA sequencing. Golgi-stained neurons in mECII were assessed for dendritic complexity via Sholl analysis. Iba1 staining evaluated microglial activation in mECII. Intestinal sections were stained with NeuN and CD8 to assess enteric neuron density and inflammation. Microbial abundance was correlated with dendritic parameters. RESULTS: AIGD resulted in significant dysbiosis, including depletion of butyrate-producing taxa (Roseburia, Faecalibacterium) and enrichment of proinflammatory bacteria (Clostridium, Salmonella, Enterococcus). Stellate cells showed marked dendritic atrophy, while pyramidal island cells were unaffected. Dendritic complexity positively correlated with Roseburia hominis and negatively with Enterococcus faecalis. No microglial activation was detected in mECII, but CD8 + T-cell infiltration increased in the gut without changes in NeuN-labeled enteric neurons. DISCUSSION: These findings suggest AIGD selectively alters mECII stellate cell morphology through peripheral immune signaling or microbial metabolites, independent of local microglial activation. This study highlights the role of gut microbiota in shaping neuronal architecture and supports microbiome-targeted strategies to counteract dysbiosis-associated neuroanatomical changes.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。