PDK4 and nutrient responses explain muscle specific manifestation in mitochondrial disease.

PDK4 和营养反应解释了线粒体疾病中肌肉特异性表现

阅读:7
作者:Pradhan Swagat, Mito Takayuki, Khan Nahid A, Olander Sofiia, Zhaivoron Aleksandra, McWilliams Thomas G, Suomalainen Anu
BACKGROUND: Mitochondria elicit various metabolic stress responses, the roles of which in diseases are poorly understood. Here, we explore how different muscles of one individual-extraocular muscles (EOMs) and quadriceps femoris (QFs) muscles-respond to mitochondrial disease. The aim is to explain why EOMs atrophy early in the disease, unlike other muscles. METHODS: We used a mouse model for mitochondrial myopathy ("deletor"), which manifests progressive respiratory chain deficiency and human disease hallmarks in itsmuscles. Analyses included histology, ultrastructure, bulk and single-nuclear RNA-sequencing, metabolomics, and mitochondrial turnover assessed through in vivo mitophagy using transgenic mito-QC marker mice crossed to deletors. RESULTS: In mitochondrial muscle disease, large QFs upregulate glucose uptake that drives anabolic glycolytic one-carbon metabolism and mitochondrial integrated stress response. EOMs, however, react in an opposite manner, inhibiting glucose and pyruvate oxidation by activating PDK4, a pyruvate dehydrogenase kinase and inhibitor. Instead, EOMs upregulate acetyl-CoA synthesis and fatty-acid oxidation pathways, and accumulate lipids. In QFs, Pdk4 transcription is not induced.- Amino acid levels are increased in QFs but are low in EOMs suggesting their catabolic use for energy metabolism. Mitophagy is stalled in both muscle types, in the most affected fibers. CONCLUSIONS: Our evidence indicates that different muscles respond differently to mitochondrial disease even in one individual. While large muscles switch to anabolic mode and glycolysis, EOMs actively inhibit glucose usage. They upregulate lipid oxidation pathway, a non-optimal fuel choice in mitochondrial myopathy, leading to lipid accumulation and possibly increased reliance on amino acid oxidation. We propose that these consequences of non-optimal nutrient responses lead to EOMatrophy and progressive external ophthalmoplegia in patients. Our evidence highlights the importance of PDK4 and aberrant nutrient signaling underlying muscle atrophies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。